The Preparation and Properties of BaTa_{0.8}S₃, BaNb_{0.8}S₃, and BaTa_{0.8}Se₃

P. C. DONOHUE AND J. F. WEIHER

Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898

Received July 20, 1973

Compounds of the formulas $BaTa_{0.8}S_3$, $BaNb_{0.8}S_3$, and $BaTa_{0.8}Se_3$ were prepared by two methods: reaction of the elements in evacuated silica tubes and reaction of H_2S over mixtures of $BaCO_3$ and $0.4Ta(Nb)_2O_5$. They have the hexagonal $BaNiO_3$ -type structure and are diamagnetic semiconductors. From the stoichiometries and properties we conclude that Nb and Ta are pentavalent.

Introduction

Compounds of the formula BaTaS₃ and BaTaSe₃ are reported to be semiconductors and have the hexagonal BaNiO₃ structure (1, 2, 3). In this structure, continuous strings of face-sharing octahedra extend in the *c* axis direction. As reported (3), the Ta-Ta distance within the strings is 2.871 Å, which is small enough to expect metal-metal bonding and metallic conduction. The observed semiconductivity rather than metallic conductivity has prompted speculation that the large spinorbit coupling of Ta⁴⁺ stabilizes the semiconducting state (4).

As part of a larger study of compounds of this type and to resolve the question of semiconductivity and bonding, we studied the synthesis and bonding of $BaTaS_3$.

Experimental

Compositions of varying Ba: Ta and Ba: Nb ratios were prepared by two methods: by heating sealed evacuated silica tubes containing the elements plus a small amount of iodine, and by passing H_2S over finely ground mixtures of BaCO₃ and Ta₂O₅ or Nb₂O₅.

Ba, obtained 99.5% pure from ESPI, was cut and weighed in a N₂-filled dry box. Ta and Nb powders of 99.95% purity and S Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain and Se of 99.999 % purity obtained from ROC/ RIC were weighed in air and with about 5 mg I_2/cm^3 were sealed in evacuated silica tubes which were coated on the inside by carbon from pyrolysis of toluene. The tubes, measuring 15 mm o.d. \times 12 mm \times 6 in., were heated in natural gradient furnaces with the ends containing the metals at about 350 to 400°C; the other ends extended to the cooler furnace openings. After about 12 hr, the temperature was raised to 600°C for 12 hr, then to 800°C for 12 hr. When all the S was taken up, the tubes were opened; the products were reground, sealed in evacuated silica tubes, and heated in a muffle furnace between 800° and 1100°C for 48 hr. The products formed as black sintered masses with no chemical transport.

Reactions were also carried out by grinding together spec pure $BaCO_3$ and Ta_2O_5 or Nb_2O_5 weighed in varying mole ratios. The mixtures were placed in silica boats and heated between 800 and 1100°C in a stream of reagentgrade H₂S obtained from Mathieson Co. Products were heated from 24 to 48 hr with at least one regrinding to ensure complete reaction.

All products were characterized by X-ray powder diffraction chemical analysis, and pycnometric density measurements. Cell dimensions were refined using a computerized least-squares technique to standard errors of about 0.001 Å.

The magnetic susceptibilities were measured by the conventional Faraday method using a Cahn RG microbalanace, a field gradient $H(\partial H/\partial X)$ of the order 4×10^7 Oe²/cm at 1.7×10^4 Oe, and HgCo(CNS)₄ as calibrant.

Electrical resistivities were measured by the ordinary four-probe method, using bars cut from single crystals or sintered compactions.

Results and Discussion

The starting compositions and X-ray analysis of the products are shown in Table I. Single-phase material was obtained only when starting cation ratios were Ba/0.8 Ta or Ba/0.8Nb. The starting formulas $BaTaS_3$, $BaTaSe_3$, and $BaNbS_3$, even after repeated grindings and heatings, always yielded two-phase products: (1) the $BaNiO_3$ -type phase for which the refined cell parameters are shown and (2) an unidentified phase designated as

TABLE I

Compositions Prepared in the System $Ba(Ta, Nb)_{1\pm x}X_{3-x}$

Oterations.	Cell Dimensions		
Composition	a	с	phases present
BaTaS ₃	6.847	5.760	TaS ₂ type
Ba _{0.9} TaS ₃	6.843	5.771	TaS₂ type
BaTa _{1.05} S ₃	6.867	5.762	TaS ₂ type
BaTa _{0.9} S ₃	6.840	5.775	TaS ₂ type
BaTa _{0.8} S3	6.826	5.776	none
BaTaS _{2.8}	6.869	5.780	TaS ₂ type
BaTaS _{2.7}	6.869	5.789	TaS ₂ type
BaTa _{0.8} S _{2.7}	6.874	5.752	BaS (weak)
$BaCO_3/0.45Ta_2O_5$	6.829	5.776	TaS ₂ type (weak)
BaCO ₃ /0.5Ta ₂ O ₅	6.828	5.776	TaS₂ type
BaCO ₃ /0.4Ta ₂ O ₅	6.833	5.779	none
BaTaSe ₃	7.125	6.060	TaSe ₂ type
BaTa _{0.8} Se _{2.9}	7.119	6.086	weak, unidentified
BaTa _{0.8} Se ₃	7.108	6.030	none
$BaNb_{0.8}S_3$	6.831	5.764	none

"TaS₂ type" because of the plate-like habit of the crystals and the presence of the strongest peak in the case of the sulfides at d = 6.2 Å. The second strongest line is at d = 4.13 Å. It is, however, not TaS₂. The strongest peak in TaS₂ is at 6.01 Å (ASTM 2-137).

The cell dimensions of the $BaNiO_3$ -type phases show variations indicating a narrow range in stoichiometry, apparently close to the formulas $BaTa_{0.8}S_3$ and $BaTa_{0.8}Se_3$.

The composition $BaTa_{0.8}S_3$ was established by chemical analysis and pycnometric density measurements on single-phase material prepared from oxide and H_2S . The results are shown in Table II.

The results strongly favor assignment of the formula $BaTa_{0.8}S_3$.

The density of $BaTa_{0.8}S_3$ was calculated assuming Ta vacancies. We see no evidence for ordering of vacancies, such as a superlattice, and conclude that the vacancies are random.

The magnetic susceptibility of BaNb_{0.8}S₃ was slightly temperature dependent, increasing from $\chi_M = -3 \times 10^{-5}$ at 300 K to $\chi_M = -3 \times 10^{-6}$ at 800 K. It is not clear whether this behavior is intrinsic or caused by an impurity. However, the magnetic susceptibility of nominal BaTaS₃ and BaTaSe₃ (i.e., BaTa_{0.8}S₃ containing the TaS₂ type impurity) was essentially independent of magnetic field from 8–17 kOe and temperature from 78–800 K. The susceptibility of the corresponding pure phases (BaTa_{0.8}S₃ and BaTa_{0.8}Se₃) at room temperature was the same as that of the nominal compositions and in the range expected for simple diamagnetism as shown in Table III.

TABLE II

CHEMICAL	Analysis	AND	Density	OF	BaTa _{0.8} S ₃
----------	----------	-----	---------	----	------------------------------------

	Calc. BaTaS₃	Calc. BaTa _{0.8} S₃	Observed
% Ba	33.1	36.3	37.2
% Ta	43.7	38.3	37.8
%s	23.2	25.4	26.1
%0		_	0.14
density	5.91 g/cm ³	5.39 g/cm ³	5.38 g/cm ³

TABLE III

MOLAR MAGNETIC SUSCEPTIBILITIES (χ_M)

Starting Composition	χ _m (×10 ⁻³)	Estimated diamagnetism from Pascals constants (×10 ⁻³)
BaTaS ₃ "	(0.069 ± 0.002)	
BaTa _{0.8} S ₃ ^b	$-(0.071 \pm 0.002)$	0.08
BaTaSe ₃ ^e	$-(0.082 \pm 0.002)$	
BaTa _{0.8} Se ₃ ^b	-(0.083 ± 0.002)	-0.10

^a Results are mean and standard deviations of measured values at $\sim 15^{\circ}$ intervals from 78 to 800 K. ^b Results are at room temperature only.

The electrical resistivities on sintered pellets of BaTa_{0.8}S₃ and BaTa_{0.8}Se₃ show semiconduction. The resistivity of BaTa_{0.8}Se₃ at 298K is $6 \times 10^2 \Omega$ cm with Ea = 0.4 eV. The resistivity of BaTa_{0.8}S₃ at 298 K is $2.2 \times 10^2 \ \Omega$ cm with a constant activation energy between 298 and 570 K of 0.24 eV. In comparison Gardener et al. (3) reported measurements on sintered bars of BaTaS₃: ρ 298 K = 2.5 × 10⁻¹ Ω cm with *Ea* ranging from 0.06 eV at 298 K to 0.012 eV at 80 K. If the second phase is a metallic conductor, the resistivity of BaTa_{0.8}S₃ might be lowered. We selected a crystal from a preparation of $BaTaS_3$ from the elements in which a large lump of Ta was used which did not completely react. The crystal showed the cell dimensions of BaTa_{0.8}S₃ and resistivity $\rho 298 \text{ K} = 10^9 \Omega$ cm Ea = 0.7 eV. Thus the resistivity of BaTa_{0.8}-S₃ can vary, probably because of impurities.

It is also possible that some Ta^{4+} may be present in compositions prepared with the stoichiometry BaTaS₃. This would lower the resistivity and could account for the slightly different lattice constants for different ratios of elements. Our results, however, indicate that the true formulas are BaTa_{0.8}S₃, BaTa_{0.8}-Se₃, and BaNb_{0.8}S₃ and that Ta and Nb are pentavalent. We assume that the composition BaNb_{0.8}Se₃, although not prepared, would be analogous. As expected, the compounds are diamagnetic semiconductors.

Acknowledgments

We thank Dr. D. B. Rogers for helpful discussion and encouragement. Mr. J. L. Gillson performed the electrical resistivity measurements, and Mr. D. W. Reutter assisted in sample preparation.

References

- L. A. ASLANOV AND M. KOVBA, Zh. Neorg. Khim. 9, 2441 (1964); Russ. J. Inorg. Chem. 9, 1317 (1964).
- L. A. ASLANOV, Russ. J. Inorg. Chem. 9, 1019 (1964).
- R. A. GARDNER, M. VLASSE, AND A. WOLD, *Inorg. Chem.* 8, 2784 (1969).
- 4. W. GEERTSMA, C. HAAS, R. HUISMAN, AND F. JELLINEK, Solid State Commun. 10, 75 (1972).